Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38205862

RESUMO

BACKGROUND: In Japan, the clinical treatment of boron neutron capture therapy (BNCT) has been applied to unresectable, locally advanced, and recurrent head and neck carcinomas using an accelerator-based neutron source since June of 2020. Considering the increase in the number of patients receiving BNCT, efficiency of the treatment planning procedure is becoming increasingly important. Therefore, novel and rapid dose calculation algorithms must be developed. We developed a novel algorithm for calculating neutron flux, which comprises of a combination of a Monte Carlo (MC) method and a method based on the removal-diffusion (RD) theory (RD calculation method) for the purpose of dose calculation of BNCT. PURPOSE: We present the details of our novel algorithm and the verification results of the calculation accuracy based on the MC calculation result. METHODS: In this study, the "MC-RD" calculation method was developed, wherein the RD calculation method was used to calculate the thermalization process of neutrons and the MC method was used to calculate the moderation process. The RD parameters were determined by MC calculations in advance. The MC-RD calculation accuracy was verified by comparing the results of the MC-RD and MC calculations with respect to the neutron flux distributions in each of the cubic and head phantoms filled with water. RESULTS: Comparing the MC-RD calculation results with those of MC calculations, it was found that the MC-RD calculation accurately reproduced the thermal neutron flux distribution inside the phantom, with the exception of the region near the surface of the phantom. CONCLUSIONS: The MC-RD calculation method is useful for the evaluation of the neutron flux distribution for the purpose of BNCT dose calculation, except for the region near the surface.

2.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37792507

RESUMO

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Humanos , Lipossomos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Compostos de Boro , Frutose
3.
Biology (Basel) ; 12(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759639

RESUMO

High-grade gliomas present a significant challenge in neuro-oncology because of their aggressive nature and resistance to current therapies. Boron neutron capture therapy (BNCT) is a potential treatment method; however, the boron used by the carrier compounds-such as 4-borono-L-phenylalanine (L-BPA)-have limitations. This study evaluated the use of boron-conjugated 4-iodophenylbutanamide (BC-IP), a novel boron compound in BNCT, for the treatment of glioma. Using in vitro drug exposure experiments and in vivo studies, we compared BC-IP and BPA, with a focus on boron uptake and retention characteristics. The results showed that although BC-IP had a lower boron uptake than BPA, it exhibited superior retention. Furthermore, despite lower boron accumulation in tumors, BNCT mediated by BC-IP showed significant survival improvement in glioma-bearing rats compared to controls (not treated animals and neutrons only). These results suggest that BC-IP, with its unique properties, may be an alternative boron carrier for BNCT. Further research is required to optimize this potential treatment modality, which could significantly contribute to advancing the treatment of high-grade gliomas.

4.
J Radiat Res ; 64(6): 859-869, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37717596

RESUMO

Recently, boron neutron capture therapy (BNCT) has been attracting attention as a minimally invasive cancer treatment. In 2020, the accelerator-based BNCT with L-BPA (Borofalan) as its D-sorbitol complex (Steboronine®) for head and neck cancers was approved by Pharmaceutical and Medical Devices Agency for the first time in the world. As accelerator-based neutron generation techniques are being developed in various countries, the development of novel tumor-selective boron agents is becoming increasingly important and desired. The Japanese Society of Neutron Capture Therapy believes it is necessary to propose standard evaluation protocols at each stage in the development of boron agents for BNCT. This review summarizes recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for BNCT based on our experience with L-BPA approval.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Humanos , Boro , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons , Literatura de Revisão como Assunto
5.
Nanoscale Adv ; 5(15): 3857-3861, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496630

RESUMO

The development of boron agents with integrated functionality, including biocompatibility, high boron content, and cancer cell targeting, is desired to exploit the therapeutic efficacy of boron neutron capture therapy (BNCT). Here, we report the therapeutic efficacy of BNCT using a HER-2-targeted antibody-conjugated boron nitride nanotube/ß-1,3-glucan complex. The anticancer effect of BNCT using our system was 30-fold that of the clinically available boron agent l-BPA/fructose complex.

7.
Sci Rep ; 13(1): 10173, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349515

RESUMO

Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB0,+. This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Humanos , Animais , Camundongos , Ácido Aminolevulínico/farmacologia , Boro , Glioma/radioterapia , Células-Tronco Neoplásicas , Compostos de Boro , Neoplasias Encefálicas/radioterapia
8.
Appl Radiat Isot ; 198: 110857, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37235984

RESUMO

The boron neutron capture therapy treatment planning systems such as SERA and TSUKUBA Plan, which are mainly based on the Monte Carlo method, require the lung physical density and composition of the tissue for the dose calculation. However, the physical density and composition of lungs may change because of diseases such as pneumonia and emphysema. We investigated the effect of the lung physical density on the neutron flux distribution and dose for the lung and tumor.


Assuntos
Terapia por Captura de Nêutron de Boro , Mesotelioma Maligno , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Pulmão , Método de Monte Carlo
9.
Biomed Phys Eng Express ; 9(3)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021631

RESUMO

We developed a 'hybrid algorithm' that combines the Monte Carlo (MC) and point-kernel methods for fast dose calculation in boron neutron capture therapy. The objectives of this study were to experimentally verify the hybrid algorithm and to verify the calculation accuracy and time of a 'complementary approach' adopting both the hybrid algorithm and the full-energy MC method. In the latter verification, the results were compared with those obtained using the full-energy MC method alone. In the hybrid algorithm, the moderation process of neutrons is simulated using only the MC method, and the thermalization process is modeled as a kernel. The thermal neutron fluxes calculated using only this algorithm were compared with those measured in a cubic phantom. In addition, a complementary approach was used for dose calculation in a geometry simulating the head region, and its computation time and accuracy were verified. The experimental verification indicated that the thermal neutron fluxes calculated using only the hybrid algorithm reproduced the measured values at depths exceeding a few centimeters, whereas they overestimated those at shallower depths. Compared with the calculation using only the full-energy MC method, the complementary approach reduced the computation time by approximately half, maintaining nearly same accuracy. When focusing on the calculation only using the hybrid algorithm only for the boron dose attributed to the reaction of thermal neutrons, the computation time was expected to reduce by 95% compared with the calculation using only the full-energy MC method. In conclusion, modeling the thermalization process as a kernel was effective for reducing the computation time.


Assuntos
Terapia por Captura de Nêutron de Boro , Dosagem Radioterapêutica , Terapia por Captura de Nêutron de Boro/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Nêutrons , Algoritmos
10.
Appl Radiat Isot ; 196: 110793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004295

RESUMO

In boron neutron capture therapy (BNCT), treatment planning images are acquired in the recumbent position. However, treatment is occasionally performed in the sitting position. For BNCT treatment planning, we investigated the usability of cone-beam computed tomography (CBCT) images using digital radiography equipment that allows imaging in the sitting position. The dose calculation results in both CBCT and fan beam CT were in good agreement. This method will eliminate the posture difference between planning and treatment.


Assuntos
Terapia por Captura de Nêutron de Boro , Intensificação de Imagem Radiográfica , Terapia por Captura de Nêutron de Boro/métodos , Postura Sentada , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico , Planejamento da Radioterapia Assistida por Computador/métodos
11.
J Radiat Res ; 64(3): 602-611, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37100599

RESUMO

To treat superficial tumors using accelerator-based boron neutron capture therapy (ABBNCT), a technique was investigated, based on which, a single-neutron modulator was placed inside a collimator and was irradiated with thermal neutrons. In large tumors, the dose was reduced at their edges. The objective was to generate a uniform and therapeutic intensity dose distribution. In this study, we developed a method for optimizing the shape of the intensity modulator and irradiation time ratio to generate a uniform dose distribution to treat superficial tumors of various shapes. A computational tool was developed, which performed Monte Carlo simulations using 424 different source combinations. We determined the shape of the intensity modulator with the highest minimum tumor dose. The homogeneity index (HI), which evaluates uniformity, was also derived. To evaluate the efficacy of this method, the dose distribution of a tumor with a diameter of 100 mm and thickness of 10 mm was evaluated. Furthermore, irradiation experiments were conducted using an ABBNCT system. The thermal neutron flux distribution outcomes that have considerable impacts on the tumor's dose confirmed a good agreement between experiments and calculations. Moreover, the minimum tumor dose and HI improved by 20 and 36%, respectively, compared with the irradiation case wherein a single-neutron modulator was used. The proposed method improves the minimum tumor volume and uniformity. The results demonstrate the method's efficacy in ABBNCT for the treatment of superficial tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias/radioterapia , Nêutrons , Dosagem Radioterapêutica , Método de Monte Carlo
12.
Chembiochem ; 24(15): e202300186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069129

RESUMO

Minimally invasive boron neutron capture therapy (BNCT) is an elegant approach for cancer treatment. The highly selective and efficient deliverability of boron agents to cancer cells is the key to maximizing the therapeutic benefits of BNCT. In addition, enhancement of the frequencies to achieve boron neutron capture reaction is also significant in improving therapeutic efficacy by providing a highly concentrated boron agent in each boron nanoparticle. As the density of the thermal neutron beam remains low, it is unable to induce high-efficiency cell destruction. Herein, we report phospholipid-coated boronic oxide nanoparticles as agents for BNCT that can provide a highly concentrated boron atom in each nanoparticle. The current system exhibited in vitro BNCT activity seven times higher than that of commercial boron agents. Furthermore, the system could penetrate cancer spheroids deeply, efficiently suppressing thermal neutron irradiation-induced growth.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Boro , Fosfolipídeos , Compostos de Boro/uso terapêutico , Óxidos
13.
Appl Radiat Isot ; 197: 110792, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37062147

RESUMO

There are few studies about boron neutron capture therapy (BNCT) for cervical cancer. The present study evaluated the biodistribution of boronophenylalanine (BPA) and the effect of BNCT on cervical cancer cell lines. BPA exposure and neutron irradiation of cervical cancer cell lines resulted in decreased survival fraction compared to irradiation only. In vivo cervical cancer tumor boron concentration was highest at 2.5 h after BPA intraperitoneal administration, and higher than in the other organs. BNCT may be effective against cervical carcinoma.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Distribuição Tecidual , Compostos de Boro/uso terapêutico
14.
Biology (Basel) ; 12(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979069

RESUMO

Integrin αvß3 is more highly expressed in high-grade glioma cells than in normal tissues. In this study, a novel boron-10 carrier containing maleimide-functionalized closo-dodecaborate (MID), serum albumin as a drug delivery system, and cyclic arginine-glycine-aspartate (cRGD) that can target integrin αvß3 was developed. The efficacy of boron neutron capture therapy (BNCT) targeting integrin αvß3 in glioma cells in the brain of rats using a cRGD-functionalized MID-albumin conjugate (cRGD-MID-AC) was evaluated. F98 glioma cells exposed to boronophenylalanine (BPA), cRGD-MID-AC, and cRGD + MID were used for cellular uptake and neutron-irradiation experiments. An F98 glioma-bearing rat brain tumor model was used for biodistribution and neutron-irradiation experiments after BPA or cRGD-MID-AC administration. BNCT using cRGD-MID-AC had a sufficient cell-killing effect in vitro, similar to that with BNCT using BPA. In biodistribution experiments, cRGD-MID-AC accumulated in the brain tumor, with the highest boron concentration observed 8 h after administration. Significant differences were observed between the untreated group and BNCT using cRGD-MID-AC groups in the in vivo neutron-irradiation experiments through the log-rank test. Long-term survivors were observed only in BNCT using cRGD-MID-AC groups 8 h after intravenous administration. These findings suggest that BNCT with cRGD-MID-AC is highly selective against gliomas through a mechanism that is different from that of BNCT with BPA.

15.
Anticancer Res ; 43(4): 1455-1461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36974803

RESUMO

BACKGROUND/AIM: To investigate the long-term influence of head-neutron irradiation on mice spleens, post-radiation late effects were examined in three types of mice: Balb/c and severe combined immunodeficiency (SCID) mice, which have high radio-sensitivities, and C3H mice. MATERIALS AND METHODS: Neutron irradiation was performed with the neutron beam of the Kyoto University Research Reactor. Survival fractions and the change in spleen size after head-neutron irradiation were investigated in three different types of mice. Physical condition after neutron irradiation was observed for eighteen months. RESULTS: The onset of primary splenic malignant lymphoma was recognized in many of the Balb/c mice 18 months after head-neutron irradiation. Eight months after head-neutron irradiation, many SCID mice developed an abscess in the part exposed to radiation and spleen swelling. The swollen spleen of SCID mice had hematopoiesis from the marrow. CONCLUSION: Low energy head-neutron irradiation damages immune organs in radiosensitive SCID and Balb/c mice. A combination of boron neutron capture therapy and immunotherapy may be less toxic than low-energy neutron-irradiation alone.


Assuntos
Terapia por Captura de Nêutron de Boro , Baço , Camundongos , Animais , Camundongos SCID , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Carcinogênese , Nêutrons
16.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831378

RESUMO

BACKGROUND: Boron neutron capture therapy (BNCT) has been adapted to high-grade gliomas (HG); however, some gliomas are refractory to BNCT using boronophenylalanine (BPA). In this study, the feasibility of BNCT targeting the 18 kDa translocator protein (TSPO) expressed in glioblastoma and surrounding environmental cells was investigated. METHODS: Three rat glioma cell lines, an F98 rat glioma bearing brain tumor model, DPA-BSTPG which is a boron-10 compound targeting TSPO, BPA, and sodium borocaptate (BSH) were used. TSPO expression was evaluated in the F98 rat glioma model. Boron uptake was assessed in three rat glioma cell lines and in the F98 rat glioma model. In vitro and in vivo neutron irradiation experiments were performed. RESULTS: DPA-BSTPG was efficiently taken up in vitro. The brain tumor has 16-fold higher TSPO expressions than its brain tissue. The compound biological effectiveness value of DPA-BSTPG was 8.43 to F98 rat glioma cells. The boron concentration in the tumor using DPA-BSTPG convection-enhanced delivery (CED) administration was approximately twice as high as using BPA intravenous administration. BNCT using DPA-BSTPG has significant efficacy over the untreated group. BNCT using a combination of BPA and DPA-BSTPG gained significantly longer survival times than using BPA alone. CONCLUSION: DPA-BSTPG in combination with BPA may provide the multi-targeted neutron capture therapy against HG.

17.
J Radiat Res ; 64(2): 399-411, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36763853

RESUMO

Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or neo vector (SAS/neo) were inoculated subcutaneously into left hind legs of nude mice. After the subcutaneous administration of a 10B-carrier, boronophenylalanine-10B (BPA) or sodium mercaptododecaborate-10B (BSH), at two separate concentrations, the 10B concentrations in tumors were measured using γ-ray spectrometry. The tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) tumor cells, then were administered with BPA or BSH. Subsequently, the tumors were irradiated with reactor neutron beams during the time of which 10B concentrations were kept at levels similar to each other. Following irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of BrdU-unlabeled quiescent (Q) and total (= P + Q) tumor cells were assessed based on the frequencies of micronucleation using immunofluorescence staining for BrdU. In both SAS/neo and SAS/mp53 tumors, the compound biological effectiveness (CBE) values were higher in Q cells and in the use of BPA than total cells and BSH, respectively. The higher the administered concentrations were, the smaller the CBE values became, with a clearer tendency in SAS/neo tumors and the use of BPA than in SAS/mp53 tumors and BSH, respectively. The values for BPA that delivers into solid tumors more dependently on uptake capacity of tumor cells than BSH became more alterable. Tumor micro-environmental heterogeneity might partially influence on the CBE value. The CBE value can be regarded as one of the indices showing the level of intratumor heterogeneity.


Assuntos
Terapia por Captura de Nêutron de Boro , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Humanos , Bromodesoxiuridina/análise , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Terapia por Captura de Nêutron de Boro/métodos , Camundongos Nus , Compostos de Boro/uso terapêutico , Boroidretos/química , Compostos de Sulfidrila , Proteína Supressora de Tumor p53
18.
Nanomedicine ; 49: 102659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822335

RESUMO

Boron neutron capture therapy shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing pullulan nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells in vitro. The accumulation of HBNGs in tumors, due to the enhanced permeation and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Nanogéis , Boro , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Compostos de Boro , Frutose
19.
J Radiat Res ; 63(6): 866-873, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36149023

RESUMO

The distribution of the thermal neutron flux has a significant impact on the treatment efficacy. We developed an irradiation method of overlapping irradiation fields using intensity modulators for the treatment of superficial tumors with the aim of expanding the indications for accelerator-based boron neutron capture therapy (BNCT). The shape of the intensity modulator was determined and Monte Carlo simulations were carried out to determine the uniformity of the resulting thermal neutron flux distribution. The intensity modulators were then fabricated and irradiation tests were conducted, which resulted in the formation of a uniform thermal neutron flux distribution. Finally, an evaluation of the tumor dose distribution showed that when two irradiation fields overlapped, the minimum tumor dose was 27.4 Gy-eq, which was higher than the tumor control dose of 20 Gy-eq. Furthermore, it was found that the uniformity of the treatment was improved 47% as compared to the treatment that uses a single irradiation field. This clearly demonstrates the effectiveness of this technique and the possibility of expanding the indications to superficially located tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Neoplasias/radioterapia
20.
Radiat Res ; 198(4): 368-374, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904430

RESUMO

Radiation-induced liver diseases, including liver fibrosis, occurs when radiation damages the liver. Basic research on hepatic fibrosis, which is a late radiation injury, is necessary for evaluating adverse liver events occurring after boron neutron capture therapy. This study was conducted to establish a method for analyzing the negative effect such as fibrosis in the liver tissue after boron neutron capture therapy. Female C57BL6 mice were injected with p-boronophenylalanine solution subcutaneously at 2 h before neutron irradiation. Masson trichrome staining was performed to determine the degree of liver fibrosis. The degree of fat accumulation in mouse normal liver tissue after boron neutron capture therapy was evaluated using hematoxylin and eosin staining and triglyceride quantification. Western blotting was performed to determine the expression level of Sonic Hedgehog. Liver fat accumulation and fibrosis were significantly increased in the neutron irradiation group injected with p-boronophenylalanine compared with control group. In addition, Sonic Hedgehog expression was increased in response to boron neutron capture therapy-induced liver injury and was involved in liver fibrosis. Hepatocellular fat accumulation and Hedgehog signaling activation may be indicators of adverse events related to boron neutron capture therapy associated with liver fibrosis.


Assuntos
Terapia por Captura de Nêutron de Boro , Animais , Compostos de Boro , Terapia por Captura de Nêutron de Boro/efeitos adversos , Terapia por Captura de Nêutron de Boro/métodos , Amarelo de Eosina-(YS) , Feminino , Fibrose , Proteínas Hedgehog , Hematoxilina , Cirrose Hepática , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/análogos & derivados , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...